martes, 30 de septiembre de 2014

Medidas de almacenamiento

Las medidas de almacenamiento son aquellas unidades de medición que permiten determinar cuánto espacio hay disponible en una unidad de memoria.
Se le llama medida de almacenamiento al registro del espacio que hay en un dispositivo dado para grabar datos e información de manera permanente o temporal. También se puede decir que una medida de almacenamiento es aquella práctica que se realiza con el interés de optimizar el rendimiento y aprovechar todo el espacio que existe dentro de una unidad.
En informática, existen distintos dispositivos de almacenamiento que facilitan la conservación de información, ya sea dentro del ordenador o fuera, como una memoria portátil. Los dispositivos pueden ser tanto una memoria o disco duro, un disco o CD – ROM, una memoria flash o portátil, un DVD y varias otras. En éstas la información puede almacenarse en forma provisoria o temporaria o de manera permanente.
Entre las unidades de medición de almacenamiento, es decir, el tamaño o espacio disponible en cada uno de estos dispositivos, se cuentan:

- el bit o dígito binario:
 un bit es la unidad de información más pequeña que el procesador manipula y físicamente se representa con un elemento como un pulso o un punto. Ocho bits constituyen un byte.
- el byte o unidad de almacenamiento: cuenta con 8 bits. Equivale a un sólo carácter, como una letra o un número.
- el kilobyte (kB): equivale a 1.024 bytes y a menudo es la unidad en la que se registra el almacenamiento de archivos pequeños como documentos de texto o imágenes en baja resolución.
- el megabyte (MB): equivale a más de un millón de bytes, y comúmente archivos de tamaño considerable se almacenan en esta unidad. Por ejemplo, imágenes en alta resolución, archivos, carpetas, documentos y hasta programas.
- el gigabyte (GB): equivale a mil millones de bytes. Es la unidad que más típicamente se maneja hoy en día, y los ordenadores más comunes proveen de un espacio de más de 100 GB para memoria. Los archivos de todo un ordenador de tamaño considerable se miden en GB.
- el terabyte (TB): equivale a 1024 Gigabytes y es una medida que se utiliza para referir a ordenadores de alta complejidad.


Internet

Internet es una red de redes que permite la interconexión descentralizada de computadoras a través de un conjunto de protocolos denominado TCP/IP. Tuvo sus orígenes en 1969, cuando una agencia del Departamento de Defensa de los Estados Unidos comenzó a buscar alternativas ante una eventual guerra atómica que pudiera incomunicar a las personas. Tres años más tarde se realizó la primera demostración pública del sistema ideado, gracias a que tres universidades de California y una de Utah lograron establecer una conexión conocida como ARPANET (Advanced Research Projects Agency Network).


A diferencia de lo que suele pensarse, Internet y la World Wide Web no son sinónimos. La WWW es un sistema de información desarrollado en 1989 por Tim Berners Lee y Robert Cailliau. Este servicio permite el acceso a información que se encuentra enlazada mediante el protocolo HTTP (HyperText Transfer Protocol).
Otros servicios y protocolos disponibles en la red de redes son el acceso remoto a computadoras conocido como Telnet, el sistema de transferencia de archivos FTP, el correo electrónico (POP y SMTP), el intercambio de archivos P2P y las conversaciones online o chats.
El desarrollo de Internet ha superado ampliamente cualquier previsión y constituyó una verdadera revolución en la sociedad moderna. El sistema se transformó en un pilar de las comunicaciones, el entretenimiento y el comercio en todos los rincones del planeta.
Las estadísticas indican que, en 2006, los usuarios de Internet (conocidos como internautas) superaron los 1.100 millones de personas. Se espera que en la próxima década esa cifra se duplique, impulsada por la masificación de los accesos de alta velocidad (banda ancha).


Dispositivos de salida

Los dispositivos de salida son aquellos periféricos que se adosan a un ordenador y que tienen como finalidad comunicar información al usuario. Se distinguen de los dispositivos de entrada, que son aquellos mediante los cuales el usuario incorpora información al ordenador. Los dispositivos de salida muestran información que ya ha sido ingresada y procesada, información que es devuelta al mundo real. En los comienzos de la informática fueron extremadamente rudimentarios, pero con el paso del tiempo fueron evolucionando hasta ofrecer un altísimo grado de precisión. En la actualidad podemos encontrar varios tipos de dispositivos de estas características, como por ejemplo monitores, impresoras, parlantes, etc.
Tanto los dispositivos de salida como los de entrada son llamados periféricos por el hecho de ser secundarios en las funciones de un ordenador. En efecto, la mayoría de ellos pueden suprimirse o intercambiarse por otros, a pesar de que en algunos casos nos parezca que son de gran importancia. El criterio que cabe entender en este punto es el hecho de que una computadora fue ideada con una arquitectura bastante definida, arquitectura que se centraba en la existencia de la unidad central de proceso como elemento principal. A lo largo del tiempo se ha visto como algunos dispositivos de salida fueron quedando obsoletos y necesitaron del remplazo de otro tipo más acorde. Un buen ejemplo de esta circunstancia puede ofrecerlo el modo en que una computadora ofrece los datos de una operación al usuario: ahora vemos esta información mediante el monitor, pero en las primeras computadoras se necesitaba de la interpretación de luces que parpadeaban, circunstancia observable en viejas películas.
Los dos dispositivos de salida más utilizados son sin lugar a dudas el monitor y los parlantes. Los mismos apuntan a dos de los sentidos más importantes en el ser humano para la decodificación de información, como lo son la vista y el oído. En el pasado, la posibilidad de que un periférico de salida ofrezca posibilidades de escuchar algo era considerada superflua puesto que la computadora era concebida meramente como un medio de realizar cálculos. Cuando se comienza a utilizar el ordenador con otros fines, como por ejemplo el disfrute de contenidos multimedia, este tipo de circunstancia cambia enormemente. En cuanto al monitor, si bien es cierto que tiene larga data entre nosotros, también es cierto que experimentó muchos cambios, agregando cada vez más posibilidades de representación de gráficos, circunstancia que seguramente continuará en el futuro pero con menos relevancia.




Dispositivos de entrada

INTRODUCCIÓN.
Las computadoras electrónicas modernas son una herramienta esencial en muchas áreas: industriagobiernocienciaeducación,..., en realidad en casi todos los campos de nuestras vidas.
El papel que juegan los dispositivos periféricos de la computadora es esencial; sin tales dispositivos ésta no sería totalmente útil. A través de los dispositivos periféricos podemos introducir a la computadora datos que nos sea útiles para la resolución de algún problema y por consiguiente obtener el resultado de dichas operaciones, es decir; poder comunicarnos con la computadora.
La computadora necesita de entradas para poder generar salidas y éstas se dan a través de dos tipos de dispositivos periféricos existentes:
• Dispositivos periféricos de entrada.
• Dispositivos periféricos de salida.
  • DISPOSITIVOS:
Los dispositivos son regímenes definibles, con sus variaciones y transformaciones. Presentan líneas de fuerza que atraviesan umbrales en función de los cuales son estéticos, científicos, políticos, etc. Cuando la fuerza en un dispositivo en lugar de entrar en relación lineal con otra fuerza, se vuelve sobre sí misma y se afecta, no se trata de saber ni de poder, sino de un proceso de individuación relativo a grupos o personas que se sustrae a las relaciones de fuerzas establecidas como saberes constituidos.
  • LOS DISPOSITIVOS DE ENTRADA/SALIDA:
Son aquellos que permiten la comunicación entre la computadora y el usuario.
  • DISPOSITIVOS DE ENTRADA:
Son aquellos que sirven para introducir datos a la computadora para su proceso. Los datos se leen de los dispositivos de entrada y se almacenan en la memoria central o interna. Los dispositivos de entrada convierten la información en señales eléctricas que se almacenan en la memoria central.
Los dispositivos de entrada típicos son los teclados, otros son: lápices ópticos, palancas de mando (joystick), CD-ROM, discos compactos (CD), etc. Hoy en día es muy frecuente que el usuario utilice un dispositivo de entrada llamado ratón que mueve un puntero electrónico sobre una pantalla que facilita la interacción usuario-máquina.
  • DISPOSITIVOS DE SALIDA:
Son los que permiten representar los resultados (salida) del proceso de datos. El dispositivo de salida típico es la pantalla o monitor. Otros dispositivos de salida son: impresoras (imprimen resultados en papel), trazadores gráficos (plotters), bocinas, entre otros...
TIPOS DE DISPOSITIVOS:
ENTRADA:
  1. Mouse:
La función principal del ratón es transmitir los movimientos de nuestra mano sobre una superficie plana hacia el ordenador. Allí, el software denominado driver se encarga realmente de transformarlo a un movimiento del puntero por la pantalla dependiendo de varios parámetros.
En el momento de activar el ratón, se asocia su posición con la del cursor en la pantalla. Si desplazamos sobre una superficie el ratón, el cursor seguirá dichos movimientos. Es casi imprescindible en aplicaciones dirigidas por menús o entornos gráficos, como por ejemplo Windows, ya que con un pulsador adicional en cualquier instante se pueden obtener en programa las coordenadas (x, y) donde se encuentra el cursor en la pantalla, seleccionando de esta forma una de las opciones de un menú.
Hay cuatro formas de realizar la transformación y por tanto cuatro tipos de ratones:
  • Mecánicos: Son los más utilizados por su sencillez y bajo coste. Se basan en una bola de silicona que gira en la parte inferior del ratón a medida que desplazábamos éste. Dicha bola hace contacto con dos rodillos, uno perpendicular al ratón y otro transversal, de forma que uno recoge los movimientos de la bola en sentido horizontal y el otro en sentido vertical
En cada extremo de los ejes donde están situados los rodillos, existe una pequeña rueda conocida como "codificador", que gira en torno a cada rodillo. Estas ruedas poseen en su superficie, y a modo de radios, una serie de contactos de metal, que a medida que gira la rueda toca con dos pequeñas barras fijas conectadas al circuito integrado en el ratón.
Cada vez que se produce contacto entre el material conductor de la rueda y las barras, se origina una señal eléctrica. Así, el número de se señales indicará la cantidad de puntos que han pasado éstas, lo que implica que, a mayor número de señales, mayor distancia habrá recorrido el ratón. Tras convertir el movimiento en señales eléctricas, se enviaban al software del ordenador por medio del cable.

Figura. Bola y zonas de contacto con los rodillos
Los botones son simples interruptores. Debajo de cada uno de ellos se encuentra un microinterruptor que en estado de "reposo" interrumpe un pequeño circuito. En cuanto se ejerce una ligera presión sobre estos, se activa el circuito, dejando pasar una señal eléctrica que será única en caso de que sólo se haga "clic" con el botón, o continua en caso de dejarlo pulsado.
Por último las señales se dan cita en el pequeño chip que gobierna el ratón, y son enviadas al ordenador a través del cable con los une. Allí el controlador del ratón decidirá, en función del desplazamiento vertical y horizontal detectado, el movimiento final que llevará el cursor. También será capaz de aumentar o disminuir ese movimiento, dependiendo de factores como la resolución que se le haya especificado al ratón.
Figura Esquema general de un ratón mecánico.
  • Los ratones opto-mecánicos trabajan según el mismo principio que los mecánicos, pero aquí los cilindros están conectados a codificadores ópticos que emplean pulsos luminosos al ordenador, en lugar de señales eléctricas. El modo de capturar el movimiento es distinto. Los tradicionales rodillos que giran una rueda radiada ahora pueden girar una rueda ranurada, de forma que un haz de luz las atraviesa. De esta forma, el corte intermitente del haz de luz por la rueda es recogido en el otro lado por una célula fotoeléctrica que decide hacia donde gira el ratón y a que velocidad
Figura. Codificadores del ratón.
  • Los ratones de ruedas sustituyen la bola giratoria por unas ruedas de material plástico, perpendiculares entre sí, dirigiendo así a los codificadores directamente.
  • Los ratones ópticos carecen de bola y rodillos, y poseen unos foto-sensores o sensores ópticos que detectan los cambios en los patrones de la superficie por la que se mueve el ratón. Antiguamente, estos ratones necesitaban una alfombrilla especial, pero actualmente no. Microsoft ha denominado a este sistema IntelliEye en su ratón IntelliMouse y es capaz de explorar el escritorio 1500 veces por segundo, sobre multitud de superficies distintas como madera plástico o tela. La ventaja de estos ratones estriba en su precisión y en la carencia de partes móviles, aunque son lógicamente algo más caros que el resto.
Una característica a tener en cuenta será la resolución, o sensibilidad mínima del sistema de seguimiento: en el momento en que el ratón detecte una variación en su posición, enviará las señales correspondientes al ordenador. La resolución se expresa en puntos por pulgada (ppp). Un ratón de 200 ppp podrá detectar cambios en la posición tan pequeños como 1/200 de pulgada, y así, por cada pulgada que se mueva el ratón, el cursor se desplazará 200 píxeles en la pantalla. El problema es que la relación entre la sensibilidad del movimiento y el movimiento en pantalla es de 1:1 (un desplazamiento equivalente a la sensibilidad mínima provoca un desplazamiento de un píxel en la pantalla); como consecuencia, cuanto mayor sea la resolución del monitor, mayor será el desplazamiento que habrá que imprimir al ratón para conseguir un desplazamiento equivalente en pantalla. Para solucionar este problema los fabricantes desarrollaron el seguimiento dinámico, que permite variar la relación anterior a 1: N, donde N > 1.
Una de las cosas que está cambiando es el medio de transmisión de los datos desde el ratón al ordenador. Se intenta acabar el cable que siempre conduce la información debido a las dificultades que añadía al movimiento. En la actualidad estos están siendo sustituidos por sistemas de infrarrojos o por ondas de radio (como incorpora el Cordless MouseMan Wheel de Logitech). Esta última técnica es mejor, pues los objetos de la mesa no interfieren la comunicación. Los dos botones o interruptores tradicionales han dejado evolucionado a multitud de botones, ruedas, y palancas que están dedicados a facilitar las tareas de trabajo con el ordenador, sobre todo cuando se trabaja con Internet. Hay modelos que no sólo tienen mandos que incorporan las funciones más comunes de los buscadores o navegadores, sino que tienen botones para memorizar las direcciones más visitadas por el usuario. Naturalmente, los fabricantes han aprovechado para poner botones fijos no configurables con direcciones a sus páginas.
La tecnología force-feedback consiste en la transmisión por parte del ordenador de sensaciones a través del periférico. Podremos sentir diferentes sensaciones dependiendo de nuestras acciones. Por ejemplo, si nos salimos de la ventana activa, podremos notar que el ratón se opone a nuestros movimientos. Por supuesto, un campo también interesante para esto son los juegos. En los juegos de golf, se podría llegar a tener sensaciones distintas al golpear la bola dependiendo de si esta se encuentra en arena, hierba, etc... Lamentablemente, este tipo de ratones si se encuentra estrechamente unido a alfombrillas especiales.
Existen dos tipos de conexiones para el ratón: Serie y PS/2. En la práctica no hay ventaja de un tipo de puerto sobre otro.
  • Criterios para seleccionar un ratón
El primer criterio será la sencillez a menor número de botones y de mecanismos mayor será la sencillez de su uso. Aunque también para determinados trabajos en los que se precise utilizar de forma continuada el ratón será mejor elegir uno que facilite el trabajo a realizar y que además nos optimice el tiempo. Para ello son muy indicados sobre todos los ratones que poseen la ruedecilla central para que actúe de como scroll.
Otro criterio será el de ergonomía. El ratón deberá estar construido de modo que la mano pueda descansar naturalmente sobre él, alcanzando los dedos los pulsadores de forma cómoda.
Para elegir un ratón USB, al igual que con el teclado, hay que tener instalado el sistema operativo con el suplemento USB o no funcionará. Un ratón USB tiene una ventaja. El ratón PS/2 consume una IRQ (normalmente la IRQ12) y si lo conectas al COM1/2, pierdes un puerto serie (que si no utilizas puedes anular en la BIOS de la placa base y recuperar una IRQ para otros dispositivos). Cierto que el puerto USB también consume una IRQ, pero si te posees HUB USB o tienes otro dispositivo USB (dos dispositivos en 2 puertos USB sin un HUB), con dos (o hasta 128 usando HUBs) dispositivos USB sólo consumes una IRQ, y si lo puedes conectar al puerto USB del teclado, no gastas una IRQ adicional ni el otro puerto USB.
  • Tipos de Mouse:
  • Mecánico: es una unidad de ingreso de datos equipada con uno o más botones y una pequeña esfera en su parte inferior, del tamaño de una mano y diseñado para trabajar sobre una tabla o mouse-pad ubicada al lado del teclado. Al mover el mouse la esfera rueda y un censor activa la acción.
  • Óptico: es el que emplea la luz para obtener sus coordenadas y se desplaza sobre una tabla que contiene una rejilla reflectante, colocada sobre el escritorio.
  • Marcas:
Genius, Microsoft, General Electric, Generico
  1. Teclado:
Es el dispositivo más común de entrada de datos. Se lo utiliza para introducir comandos, textos y números. Estrictamente hablando, es un dispositivo de entrada y de salida, ya que los LEDs también pueden ser controlados por la máquina.
  • Historia del teclado:
Cuando en 1867 Christopher Letham Sholes diseñó la máquina de escribir, la tecnología no estaba muy avanzada, y los primeros prototipos de la máquina de escribir se atascaban constantemente. Había entonces dos caminos para resolver el problema: hacer que la máquina funcione mejor, o que los mecanógrafos funcionen peor.
La disposición de las teclas se remonta a las primeras máquinas de escribir. Aquellas máquinas eran enteramente mecánicas. Al pulsar una letra en el teclado, se movía un pequeño martillo mecánico, que golpeaba el papel a través de una cinta impregnada en tinta. Al escribir con varios dedos de forma rápida, los martillos no tenían tiempo de volver a su sitio antes de que se moviesen los siguientes, de forma que se encallaban. Para que esto ocurriese lo menos posible, el diseñador del teclado QWERTY hizo una distribución de las letras de forma contraria a lo que hubiese sido lógico con base en la frecuencia con la que cada letra aparecía en un texto. De esta manera la pulsación era más lenta y los martillos se encallaban menos veces.
Cuando aparecieron las máquinas de escribir eléctricas, y después los ordenadores, con sus teclados también eléctricos, se consideró seriamente modificar la distribución de las letras en los teclados, colocando las letras más corrientes en la zona central. El nuevo teclado ya estaba diseñado y los fabricantes preparados para iniciar la fabricación. Sin embargo, el proyecto se canceló debido al temor de que los usuarios tuvieran excesivas incomodidades para habituarse al nuevo teclado, y que ello perjudicara la introducción de los ordenadores personales, que por aquel entonces se encontraban en pleno auge.
  • Funciones del teclado:
- Teclado alfanumérico: es un conjunto de 62 teclas entre las que se encuentran las letras, números, símbolos ortográficos, Enter, alt...etc.
- Teclado de Función: es un conjunto de 13 teclas entre las que se encuentran el ESC, tan utilizado en sistemas informáticos, más 12 teclas de función. Estas teclas suelen ser configurables pero por ejemplo existe un convenio para asignar la ayuda a F1.
- Teclado Numérico: se suele encontrar a la derecha del teclado alfanumérico y consta de los números así como de un Enter y los operadores numéricos de suma, resta,... etc.
- Teclado Especial: son las flechas de dirección y un conjunto de 9 teclas agrupadas en 2 grupos; uno de 6 (Inicio y fin entre otras) y otro de 3 con la tecla de impresión de pantalla entre ellas.
  • Tipos de Teclado:
  • De Membrana: Fueron los primeros que salieron y como su propio nombre indica presentan una membrana entre la tecla y el circuito que hace que la pulsación sea un poco más dura.
  • Mecánico: Estos nuevos teclados presentan otro sistema que hace que la pulsación sea menos traumática y más suave para el usuario.
  • Teclado para internet: El nuevo Internet Keyboard incorpora 10 nuevos botones de acceso directo, integrados en un teclado estándar de ergonómico diseño que incluye un apoya manos. Los nuevos botones permiten desde abrir nuestro explorador Internet hasta ojear el correo electrónico. El software incluido, IntelliType Pro, posibilita la personalización de los botones para que sea el teclado el que trabaje como nosotros queramos que lo haga.
  • Teclados inalámbricos: Pueden fallar si están mal orientados, pero no existe diferencia con un teclado normal. En vez de enviar la señal mediante cable, lo hacen mediante infrarrojos, y la controladora no reside en el propio teclado, sino en el receptor que se conecta al conector de teclado en el PC. Si queremos conectar a nuestro equipo un teclado USB, primero debemos tener una BIOS que lo soporte y en segundo lugar debemos tener instalado el sistema operativo con el "Suplemento USB". Un buen teclado USB debe tener en su parte posterior al menos un conector USB adicional para poderlo aprovechar como HUB y poder conectar a él otros dispositivos USB como ratones, altavoces, etc
  • Marcas:
-Turbo Tecn
-Microsoft
-Genius
-Benq
-Acer
  1. Scanner:
Ateniéndonos a los criterios de la Real Academia de la Lengua, famosa por la genial introducción del término cederrón para denominar al CD-ROM, probablemente nada; para el resto de comunes mortales, digamos que es la palabra que se utiliza en informática para designar a un aparato digitalizador de imagen.
Por digitalizar se entiende la operación de transformar algo analógico (algo físico, real, de precisión infinita) en algo digital (un conjunto finito y de precisión determinada de unidades lógicas denominadas bits). En fin, que dejándonos de tanto formalismo sintáctico, en el caso que nos ocupa se trata de coger una imagen (fotografíadibujo o texto) y convertirla a un formato que podamos almacenar y modificar con el ordenador. Realmente un escáner no es ni más ni menos que los ojos del ordenador.
  • Cómo funciona
El proceso de captación de una imagen resulta casi idéntico para cualquier escáner: se ilumina la imagen con un foco de luz, se conduce mediante espejos la luz reflejada hacia un dispositivo denominado CCD que transforma la luz en señales eléctricas, se transforma dichas señales eléctricas a formato digital en un DAC (conversor analógico-digital) y se transmite el caudal de bits resultante al ordenador.
El CCD (Charge Coupled Device, dispositivo acoplado por carga -eléctrica-) es el elemento fundamental de todo escáner, independientemente de su forma, tamaño o mecánica. Consiste en un elemento electrónico que reacciona ante la luz, transmitiendo más o menos electricidad según sea la intensidad y el color de la luz que recibe; es un auténtico ojo electrónico. Hoy en día es bastante común, puede que usted posea uno sin saberlo: en su cámara de vídeo, en su fax, en su cámara de fotos digital...
La calidad final del escaneado dependerá fundamentalmente de la calidad del CCD; los demás elementos podrán hacer un trabajo mejor o peor, pero si la imagen no es captada con fidelidad cualquier operación posterior no podrá arreglar el problema. Teniendo en cuenta lo anterior, también debemos tener en cuenta la calidad del DAC, puesto que de nada sirve captar la luz con enorme precisión si perdemos mucha de esa información al transformar el caudal eléctrico a bits.
Por este motivo se suele decir que son preferibles los escáneres de marcas de prestigio como Nikon o Kodak a otros con una mayor resolución teórica, pero con CCDs que no captan con fidelidad los colores o DACs que no aprovechan bien la señal eléctrica, dando resultados más pobres, más planos.
  • La resolución
No podemos continuar la explicación sin definir este término, uno de los parámetros más utilizados (a veces incluso demasiado) a la hora de determinar la calidad de un escáner. La resolución (medida en ppp, puntos por pulgada) puede definirse como el número de puntos individuales de una imagen que es capaz de captar un escáner... aunque en realidad no es algo tan sencillo.
La resolución así definida sería la resolución óptica o real del escáner. Así, cuando hablamos de un escáner con resolución de "300x600 ppp" nos estamos refiriendo a que en cada línea horizontal de una pulgada de largo (2,54 cm) puede captar 300 puntos individuales, mientras que en vertical llega hasta los 600 puntos; como en este caso, generalmente la resolución horizontal y la vertical no coinciden, siendo mayor (típicamente el doble) la vertical.
Esta resolución óptica viene dada por el CCD y es la más importante, ya que implica los límites físicos de calidad que podemos conseguir con el escáner. Por ello, es un método comercial muy típico comentar sólo el mayor de los dos valores, describiendo como "un escáner de 600 ppp" a un aparato de 300x600 ppp o "un escáner de 1.200 ppp" a un aparato de 600x1.200 ppp; téngalo en cuenta, la diferencia es obtener o no el cuádruple de puntos.
Tenemos también la resolución interpolada; consiste en superar los límites que impone la resolución óptica (300x600 ppp, por ejemplo) mediante la estimación matemática de cuáles podrían ser los valores de los puntos que añadimos por software a la imagen. Por ejemplo, si el escáner capta físicamente dos puntos contiguos, uno blanco y otro negro, supondrá que de haber podido captar un punto extra entre ambos sería de algún tono de gris. De esta forma podemos llegar a resoluciones absurdamente altas, de hasta 9.600x9.600 ppp, aunque en realidad no obtenemos más información real que la que proporciona la resolución óptica máxima del aparato. Evidentemente este valor es el que más gusta a los anunciantes de escáneres...
Por último está la propia resolución de escaneado, aquella que seleccionamos para captar una imagen concreta. Su valor irá desde un cierto mínimo (típicamente unos 75 ppp) hasta el máximo de la resolución interpolada. En este caso el valor es siempre idéntico para la resolución horizontal y la vertical, ya que si no la imagen tendría las dimensiones deformadas.
  • Los colores y los bits
Al hablar de imágenes, digitales o no, a nadie se le escapa la importancia que tiene el color. Una fotografía en color resulta mucho más agradable de ver que otra en tonos grises; un gráfico acertadamente coloreado resulta mucho más interesante que otro en blanco y negro; incluso un texto en el que los epígrafes o las conclusiones tengan un color destacado resulta menos monótono e invita a su lectura.
Sin embargo, digitalizar los infinitos matices que puede haber en una foto cualquiera no es un proceso sencillo. Hasta no hace mucho, los escáneres captaban las imágenes únicamente en blanco y negro o, como mucho, con un número muy limitado de matices de gris, entre 16 y 256. Posteriormente aparecieron escáneres que podían captar color, aunque el proceso requería tres pasadas por encima de la imagen, una para cada color primario (rojo, azul y verde). Hoy en día la práctica totalidad de los escáneres captan hasta 16,7 millones de colores distintos en una única pasada, e incluso algunos llegan hasta los 68.719 millones de colores.
Para entender cómo se llega a estas apabullantes cifras debemos explicar cómo asignan los ordenadores los colores a las imágenes. En todos los ordenadores se utiliza lo que se denomina sistema binario, que es un sistema matemático en el cual la unidad superior no es el 10 como en el sistema decimal al que estamos acostumbrados, sino el 2. Un bit cualquiera puede por tanto tomar 2 valores, que pueden representar colores (blanco y negro, por ejemplo); si en vez de un bit tenemos 8, los posibles valores son 2 elevado a 8 = 256 colores; si son 16 bits, 2 elevado a 16 = 65.536 colores; si son 24 bits, 2 elevado a 24 = 16.777216 colores; etc, etc.
Por tanto, "una imagen a 24 bits de color" es una imagen en la cual cada punto puede tener hasta 16,7 millones de colores distintos; esta cantidad de colores se considera suficiente para casi todos los usos normales de una imagen, por lo que se le suele denominar color real. La casi totalidad de los escáneres actuales capturan las imágenes con 24 bits, pero la tendencia actual consiste en escanear incluso con más bits, 30 ó incluso 36, de tal forma que se capte un espectro de colores absolutamente fiel al real; sin embargo, casi siempre se reduce posteriormente esta profundidad de color a 24 bits para mantener un tamaño de memoria razonable, pero la calidad final sigue siendo muy alta ya que sólo se eliminan los datos de color más redundantes.
 ¿Cuánto ocupa una imagen?
Tipo de original
Destino
Método escaneado
Tamaño en RAM
Fotografía 10x15 cm
Pantalla
75 ppp / 24 bits
0,4 MB
Impresora B/N
300 ppp / 8 bits
2 MB
Impresora color
300 ppp / 24 bits
6 MB
Texto o dibujo en blanco y negro tamaño DIN-A4
Pantalla
75 ppp / 1 bit
66 KB
Impresora
300 ppp / 8 bit
8 MB
OCR
300 ppp / 1 bit
1 MB
Foto DIN-A4 en color
Pantalla
75 ppp / 24 bits
1,6 MB
Impresora
300 ppp / 24 bits
25 MB
Tipos de Escáner:
  • Flatbed: significa que el dispositivo de barrido se desplaza a lo largo de un documento fijo. En este tipo de escáneres, como las fotocopiadoras de oficina, los objetos se colocan boca abajo sobre una superficie lisa de cristal y son barridos por un mecanismo que pasa por debajo de ellos. Otro tipo de escáner flatbed utiliza un elemento de barrido instalado en una carcasa fija encima del documento.
  • Escáner de mano: también llamado hand-held, porque el usuario sujeta el escáner con la mano y lo desplaza sobre el documento. Estos escáneres tienen la ventaja de ser relativamente baratos, pero resultan algo limitados porque no pueden leer documentos con una anchura mayor a 12 o 15 centímetros.
  • Lector de código de barras: dispositivo que mediante un haz de láser lee dibujos formados por barras y espacios paralelos, que codifica información mediante anchuras relativas de estos elementos. Los códigos de barras representan datos en una forma legible por el ordenador, y son uno de los medios más eficientes para la captación automática de datos.

Medios de almacenamiento


Introducción

-En los dispositivos de almacenamiento del computador, se almacenan en forma temporal o permanentemente los programas y datos que son manejados por las aplicaciones que se ejecutan en estos sistemas.

-Como la cantidad de información que manejamos hoy en día es bastante, los medios de almacenamiento se van necesitando cada día más y con mayor capacidad. Hoy en día existen medios de almacenamiento secundarios que superan los 20 GB, y aun así no es suficiente para poder hacer respaldos y transportar los documentos que el usuario necesite.

-Es por tal razón que hoy en día existen diferentes dispositivos de almacenamiento, que tienen su propia tecnología. En el presente informe se estudiaran: Las características de los medios de almacenamiento secundarios, y algunos tipos de medios de almacenamiento como por ejemplo: Memorias magnéticas, Memorias ópticas, Memorias flash

-El objetivo de este trabajo es dar a conocer los distintos tipos de almacenamiento secundarios que existen y sus características, con el fin de conocer más sobre sus formas de almacenamientos. Para así poder aprender como manejar y utilizar cada uno de ellos.

Medios de Almacenamiento secundario

-Conjuntos de dispositivos y medios de almacenamiento que juntas con la principal forman la memoria del computador.
-La memoria secundaria es un medio de almacenamiento masivo y no volátil a diferencia de la memoria RAM que no es permanente.

Características del almacenamiento secundario


* Capacidad de almacenamiento grande. 
* No se pierde información a falta de alimentación. 
* Altas velocidades de transferencia de información. 
* Mismo formato de almacenamiento que en memoria principal. 

-Siempre es independiente del CPU y de la memoria primaria. Debido a esto, los dispositivos de almacenamiento secundario, también son conocidos como, Dispositivos de Almacenamiento Externo

Disquetes
Es el primer sistema de almacenamiento extraible que se instaló en un PC, con una capacidad en los últimos modelos de 1.2 Mb. En el año 1.995,  Sony sacó al mercado unos discos ópticos denominados LS-120, en formato 3 ½', con una capacidad de 120 Mb, que debido a la lentitud de lectura y al alto precio tanto de los disquetes como de las disqueteras (estas ultimas también podían leer los disquetes de 3 ½' normales) y a que eran bastante sensibles al medio (temperatura, polvo, humedad), tampoco tuvieron demasiado éxito.


Discos duros
El primer disco duro fue inventado por IBM en 1956. A lo largo de los años, los discos duros han disminuido su precio al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de almacenamiento secundario para PC desde su aparición en los años 60.1Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.1
El disco duro esta compuesto básicamente de:

- Varios discos de metal magnetizado, que es donde se guardan los datos.
- Un motor que hace girar los discos.
- Un conjunto de cabezales, que son los que leen la información guardada en los discos.
- Un electroimán que mueve los cabezales.
- Un circuito electrónico de control, que incluye el interface con el ordenador y la memoria caché.
- Una caja hermética (aunque no al vacío), que protege el conjunto.


Usb

Una memoria USB (universal serial bus), es un dispositivo de almacenamiento que utiliza una memoria flash para guardar información. Se lo conoce también con el nombre de unidad flash USB, lápiz de memoria, lápiz USB, minidisco duro,unidad de memoria, llave de memoria, entre otros. Los primeros modelos requerían de una batería, pero los actuales ya no. Estas memorias son resistentes a los rasguños (externos), al polvo, y algunos hasta al agua, factores que afectaban a las formas previas de almacenamiento portátil, como los disquetes, discos compactos y los DVD. 
Estas memorias se han convertido en el sistema de almacenamiento y transporte personal de datos más utilizado, desplazando en este uso a los tradicionales disquetes y a los CD. Se pueden encontrar en el mercado fácilmente memorias de 1, 2, 4, 8, 16, 32, 64, 128 y hasta 256 GB. Esto supone, como mínimo, el equivalente a 180 CD de 700 MB o 91.000 disquetes de 1,44 MB aproximadamente.

Tarjetas de memoria
Secure Digital (SD) es un formato de tarjeta de memoria inventado por panasonic. Se utiliza en dispositivos portátiles tales como cámaras fotográficas digitales, PDA, teléfonos moviles,computadoras portátiles e incluso videoconsolas (tanto de sobremesa como portátiles), entre muchos otros.
Estas tarjetas tienen unas dimensiones de 32 mm x 24 mm x 2,1 mm. Existen dos tipos: unos que funcionan a velocidades normales, y otros de alta velocidad que tienen tasas de transferencia de datos más altas. Algunas cámaras fotográficas digitales requieren tarjetas de alta velocidad para poder grabar vídeo con fluidez o para capturar múltiples fotografías en una sucesión rápida.
Antes de 2005 las capacidades de estas tarjetas oscilaban entre los 16, 32 y 64 Megabytes (MB). En 2005, las capacidades típicas de una tarjeta SD eran de 128, 256 y 512 megabytes, y 1, 2 y 4 gigabytes. En 2006, se alcanzaron los 8 gb, y en 2007, los 16 GB. El 22 de agosto de 2007 toshiba anunció que para 2008 empezaría a vender memorias de 32 GB, lo cual sucedió, y hoy en día varias marcas prestigiosas venden ya memorias de esta capacidad. Recientemente la misma toshiba ha lanzado ya una memoria de 64gb.

Las tarjetas microSD o Transflash corresponden a un formato de tarjeta de memoria flash más pequeña que la miniSD, desarrollada por SanDisk; adoptada por la Asociación de tarjetas SD bajo el nombre de «microSD» en julio de 2005. Mide tan solo 15 × 11 × 1 milímetros, lo cual le da un área de 165 mm².
Capacidades:
MicroSD:
  • 16 MB (fuera de venta)
  • 32 MB (fuera de venta)
  • 64 MB (fuera de venta)
  • 128 MB (fuera de venta)
  • 256 MB (fuera de venta)
  • 512 MB
  • 1 GB
  • 2 GB
  • MicroSDHC :
    • 4 GB
    • 8 GB
    • 16 GB
    • 32 GB
 

Blogger news

Blogroll

About